王鹏
已经得到个称赞     给我点赞
  • 电子邮箱:
  • 所在单位:土木建筑学院
  • 学历:博士研究生毕业
  • 办公地点:11J4401
  • 性别:
  • 学位:工学博士学位
  • 在职信息:在职
  • 个人简介
  • 研究方向
  • 社会兼职
  • 教育经历
  • 工作经历
  • 团队成员
  • 其他联系方式

王鹏博士,济南大学土木建筑学院教授,硕士生导师日本学术振兴会外籍聘用研究员(JSPS Fellow),英国牛津大学CSC公派访问学者长期从事分析力学的研究工作,研究方向为约束系统动力学、超细长弹性杆力学、生长力学等。主持国家自然科学基金项目3项,其中面上项目2项,地区项目1项,日本学术振兴会外籍聘用研究员项目(长期)1项,在Nonlinear Dyn.、Acta Mech.、Commun. Nonlinear Sci. Numer. Simul.等刊物发表学术论文40多篇,曾获新疆自治区科技进步奖二等奖(排名第一)、山东省高校优秀科研成果奖(排名第三),新疆自治区有突出贡献优秀专家,入选新疆自治区天山英才计划。兼任中国力学学会动力学与控制委员会分析力学专业组成员,中国交叉科学学会理事,《动力学与控制学报》、《海南大学学报(自然科学版)》青年编委,岛根大学(日本)教授

主要科研项目

1.国家自然科学基金面上项目《多场耦合下轴突多尺度力学行为的非完整动力学建模与分析》(编号:12272148),55万,主持,2023.01-2026.12.

2.国家自然科学基金面上项目《单面约束弹性生长细杆的建模、稳定性分析与数值模拟》(编号:11772141),62万,主持,2018.01-2021.12。

3.国家自然科学基金地区项目《DNA超螺旋弹性杆模型的保对称性离散化方法及其数值计算研究》(编号:11262019),55万,主持,2013.01-2016.12.

4.日本学术振兴会外籍聘用研究员项目(长期)《轴突生长中力-生物电耦合的多物理场模型》(编号:L25504),约22万,主持,2025.04-2026.04.

荣誉与奖励

1. 新疆自治区第十批有突出贡献优秀专家(2015省级称号)

2. 新疆自治区天山英才工程第二层次培养人选(2013省级人才

3. 新疆自治区科技进步奖二等奖(排名第一,2011省级奖

4. 山东省高校优秀科研成果奖三等奖(排名第三,2007年,厅局级奖)

5. JSPS Fellow

学术兼职

中国力学学会动力学与控制专业委员会分析力学专业组组员

中国交叉科学学会理事

《动力学与控制学报》/《海南大学学报(自然科学版)》青年编委

岛根大学(日本)教授

发表论文

1. 王鹏,薛纭†. 超细长弹性杆力学及应用。动力学与控制学报,2025,23(3):40~47; Wang Peng, Xue Yun. The Analytical Dynamics and Applications of Super Thin Long Elastic Rod[J]. Journal  3of Dynamics and Control,2025,23(3):40-47

352. Wang Peng†, Liu B Q, Peng X T†, Gao F, Bending and vibration behavior of functionally graded piezoelectri. Scientific Reports, 2025  15:13439

3. Xu J(学生), Wang P†, Xiao Z†. Dynamic flexoelectric effect on the vibration behavior of piezoelectric nanoplates. Acta Mechanica, 2025 236, pages 79–89SCI, Q2

4. Wang P† Xu J, Zhang X, Lv Y†. Free vibration of nanobeams with surface and dynamic flexoelectric effects. Scientific Reports 2024, 14 : 30192. https://doi.org/10.1038/s41598-024-82002-9.  SCI, Q1

5. Wang P†, Liu B Q. Fractional gradient system and Birkhoff system. Acta Mechanica, 2024, 235: 3607-3619.  SCI, Q2

6. 齐皓晖(学生),王鹏†.力学系统的任意阶分数维梯度表示.力学学报,2024, 56(7):1-7.  EI收录

7. Xu J W(学生), Wang P† , Liu Z H. Electromechanical coupling in piezoelectric nanoplate due to the flexoelectric effect.  Acta Mech., 2024, 235: 479-492. https://doi.org/10.1007/s00707-023-03764-3.  SCI, Q2.

8. 管永乐(学生),王鹏†, 刘百强. 基于超细长弹性杆模型的斜拉索参数振动分析. 动力学与控制学报,2024, 22(9):37-44. 核心

9. Wang P†, Gao F. Generalized Hamilton system and fractional gradient system. AIP Advances, 2023, 13: 125112,  DOI:10.1063/5.0174244,  SCI, Q4

10. 陆登科(学生), 王鹏†,王小月,徐嘉伟,刘振海.基于超细长弹性杆模型的斜拉索静力构形分析.动 力 学 与 控 制 学 报,2023,21(7):68-76. 核心

11. Wang P†, Euler-Lagrange equations and Noether’s theorem of multi-scale mechano-electrophysiological coupling model of neuron membrane dynamics. Journal of Theoretical and Applied Mechanics, 2023;61(4):847–856 DOI: https://doi.org/10.15632/jtam-pl/172875   SCI, Q4

12.  Liu Z H(学生), Wang P†, Xu J W. The electro-mechanical coupling responses of functionally graded piezoelectric nanobeams with flexoelectric effect.  AIP Advances, 13, 065221 (2023) https://doi.org/10.1063/5.0154946  SCI, Q4

13. Wang P†, Fractional Noether theorem and fractional Lagrange equation of multi-scale mechano-electrophysiological coupling model of neuron membrane, Chin. Phys. B, 2023, 32(7), 074501 . IF:1.7 DOI: 10.1088/1674-1056/ac9cbe.  SCI, Q2

14. Wang P†, A New Fractional Gradient Representation of Birkhoff Systems. Math.Pro.Engin 2022, Vol.2022, Article ID 4493270, 10 pages   DOI: 10.1155/2022/4493270, IF: 1.43  SCI, Q2

15. Y Zhang(学生), S Zhang, and P Wang†. Growth induced buckling of morphoelastic rod in viscous medium.Chin.Phys.B. 2020, 29(5): 054501. DOI:10.1088/1674-1056/ab7b4d, WOS:000540545700001,   SCI, Q2

16. Zhang S(学生), Y Zhang, Wang P†. A new solution of thin elastic rod by dynamic analogy.J. Phys.: Conf. Ser.,,2020, 1592 012091. EI收录

17. Wang P†. Conformal invariance and conserved quantities of mechanical system with unilateral constraints. Communications in Nonlinear Science and Numerical Simulation. 2018, 59:463-471, 被引用12次. DOI:10.1016/j.cnsns.2017.12.005, IF:4.186  SCI, Q1

18.  楼智美,王元斌,王鹏. 一类典型二阶非线性微分方程的解析研究. 华东师范大学学报(自然科学版),2018,  (4):129-1378.

19. Wang P†, Feng Hui Rong,Lou Zhi Mei,Conformal Invariance and Conserved Quantities for Lagrange Equation of Thin Elastic Rod,ACTA PHYSICA POLONICA A, 2017,131(2): 283-287.DOI:10.12693/APhysPolA.131.283, WOS:000397006400014, IF:0.725  SCI, Q4

20. 王鹏†,薛纭,楼智美. 黏性流体中超细长弹性杆的动力学不稳定性. 物理学报,2017,66(9):094501-8. DOI: 10.7498/aps.66.094501, IF:0.906  SCI, Q3

21. Wang P†, Xue Y. Conformal invariance of Mei symmetry and conserved quantities of Lagrange equation of thin elastic rod,Nonliear Dynamics,2016,83(4):1815-1822.  DOI:10.1007/s11071-015-2448-8. IF:5.741,截止2023年被引用27次。SCI, Q1

22. 王鹏†,薛纭,弹性细杆静力学的薛定谔粒子波动比拟,北京大学学报,2016,52(4)676-680. 核心

23. Wang P, Xue Y, Liu Y L. Noether symmetry and conserved quantities of the analytical dynamics of a Cosserat thin elastic rod. Chin. Phys. B 2013, 22(10) 104503  SCI, Q2

24. Wang P†. Perturbation to symmetry and adiabatic invariants of discrete nonholonomicnonconservative mechanical system. Nonlinear Dyn., 2012, 68 (1-2 ): 53-62. 被引用41次。 SCI, Q1

25. Wang P, Xue Y, Liu Y L. Mei symmetry and conserved quantities in Kirchhoff thin elastic rod statics. Chin. Phys. B 2012, 21(7): 70203-070203. SCI, Q2

26. Wang P†, Zhu H J. Perturbation to symmetry and adiabatic invariants of general discrete holonomic dynamical systems. Acta Phy. Pol. A 2011, 119 (03): 298-303. SCI, Q4

27. Wang P†. Perturbation to Noether symmetry and Noether adiabatic invariants of discrete mechanico-electrical systems. Chin. Phys. Lett. 2011, 28(04): 040203-4. SCI, Q1

28. 王鹏,祝恒江. 相空间中变质量力学系统的Noether-Lie对称性与两类广义守恒量. 新疆师范大学学报(自然科学版), 2010, 29(4): 47-49. 核心

29. Wang P, Fang J H, Wang X M. A generalized Mei conserved quantities and Mei symmetry for Birkhoff systems.Chin. Phys. B 2009, 18(04): 1312-1315. SCI, Q2

30. Wang P†, Fang J H, Wang X M. Discussion on perturbation to WNS and adiabatic invariants for Lagrange systems. Chin. Phys. Lett. 2009, 26(03): 034501-4. SCI, Q1

31. Wang P, Fang J H, Ding N.Perturbation to Lie symmetry and Hojman exact and adiabatic invariants of generalized Raitzin canonical equation of motion. Commun.Theor. Phys. 2007, 48(04): 615-618. SCI, Q2 

32. Wang P, Fang J H, Ding N. Two types of new conserved quantities and Mei symmetry of mechanical systems in phase space. Commun. Theor. Phys. 2007, 48(6): 993-995. SCI, Q2

33. Wang P, Fang J H, Ding N. Hojman exact invariants and adiabatic invariants of Hamilton system, Commun. Theor. Phys. 2007, 48(06): 996-998. SCI, Q2

34. Wang P, Fang JH, Ding N, Zhang PY. A unified symmetry of nonholonomic mechanical systems in phase space. Chin.Phys. 2006, 15(07): 1403-1406.SCI, Q2

35. Wang P, Fang J H, Zhang P Y, Ding N. A unified symmetry of mechanical systems with variable mass in phase space. Commun.Theor.Phys. 2006, 46(3): 385-388. SCI, Q2


暂无内容

邮编:
  • 通讯/办公地址:
  • 邮箱: