• 其他栏目

    逄金波

    • 硕士生导师
    • 教师英文名称:Jinbo Pang
    • 教师拼音名称:pangjinbo
    • 电子邮箱:
    • 入职时间:2018-01-01
    • 所在单位:前沿交叉科学研究院
    • 职务:Professor
    • 学历:博士研究生毕业
    • 办公地点:逸夫楼B212
    • 性别:男
    • 联系方式:ifc_pangjb@ujn.edu.cn (大学邮箱)jinbo_pang_nano@163.com (咨询邮件) jinbo.pang@hotmail.com (SCI期刊审稿人邮箱)
    • 学位:博士
    • 在职信息:在职
    • 主要任职:校特聘教师A3岗
    • 毕业院校:德国德累斯顿工业大学 (TU Dresden)
    • 2008曾获荣誉当选:青岛大学优秀毕业生 (2008)
    • 2011曾获荣誉当选:南开大学优秀毕业生(2011)

    访问量:

    开通时间:..

    最后更新时间:..

    Nano-Micro Letters 综述 ,二维PdSe₂材料及其异质结在电子/光电领域中的应用和展望,逄金波、刘宏教授为通讯作者

    点击次数:

    NML综述 | 二维PdSe₂材料及其异质结在电子/光电领域中的应用和展望

    2021-9-2 21:43

    阅读:1932


    Applications of 2D‑Layered Palladium Diselenide and Its van der Waals Heterostructures in Electronics and Optoelectronics

    Yanhao Wang, Jinbo Pang*, Qilin Cheng, Lin Han*, Yufen Li, Xue Meng, Bergoi Ibarlucea, Hongbin Zhao, Feng Yang, Haiyun Liu, Hong Liu*, Weijia Zhou, Xiao Wang, Mark H. Rummeli, Yu Zhang*, Gianaurelio Cuniberti

    Nano-Micro Letters (2021)13: 143.  https://doi.org/10.1007/s40820-021-00660-0

    本文亮点

    1. 系统地阐述PdSe₂的结构-性质关系,即 层数与可调谐带隙、 五边形结构与基于 各向异性的偏振光检测。

    2. 比较了PdSe₂的各种合成方法,包括自底向上的体晶化学气相输运法、薄膜和单晶域化学气相沉积法、硒化Pd薄膜法等。此外,还讨论了自顶向下的策略,包括体晶的机械剥离、等离子体减薄、真空退火和相变。

    3. 详细地介绍了PdSe₂及其范德华异质结构的器件。

    4. 提出了基于PdSe₂材料及其范德华异质结构的未来发展机遇。

    内容简介  

    自2004年单原子层石墨烯被首次报道以来,有关二维材料的研究迅速席卷了整个化学、材料和物理等研究领域。二维过渡金属硫属化合物(TMDCs)在电子和光电子器件以及能源器件等领域具有广阔的应用前景,尤其是以二硫化钼、二硒化钨等为代表的一类半导体材料,表现出优良的光电性能,其自身还兼具独特的柔性,可以用制备下一代柔性的可穿戴设备。目前,10族过渡金属硫属化合物(nTMDCs)也在被不断地研究开发,成为了新的研究热点。尤其是PdSe₂材料的器件研究热点,涵盖了场效应晶体管、光电探测器、传感器和激光器。由于其独特的电子、光学和能带性质,PdSe₂得到了越来越多的研究与关注。因此对于二维PdSe₂在材料、制备和器件应用等方面的现状有必要进行及时的归纳和总结,这样才能促进其进一步的发展。山东大学韩琳团队和济南大学刘宏团队详尽地总结了PdSe₂研究的最新进展:首先介绍了PdSe₂材料结构、类型以及合成路线;然后讨论了热电学、光学等性质;随后着重介绍PdSe₂在电子器件方面的应用,包含场效应晶体管、光电探测器、图像传感器、湿度传感器应用等;最后对PdSe₂的后续制备及柔性电子应用,以及其在电子学与光电子等方向的潜力做出了展望。

    图文导读

    I   PdSe₂总述

    本文介绍了PdSe₂的原子结构、能带图和各向异性等基本性质;包括CVD、CVT等合成方法;场效应晶体管、光电探测器等电子应用;图像传感器、热电、激光等系统应用。文章的最后给出了对PdSe₂材料的展望,读者可以看到一些新的发展应用前景等。

    图1. PdSe₂材料结构、制备、性质及器件应用的示意图。

    II         PdSe₂结构

    晶体结构:PdSe₂是一种具有正交晶格和低对称性的二维皱褶五边形材料,被鉴定为第一个具有五边形结构的TMDC。

    电子轨道:在单层PdSe₂中,一个Pd原子与四个Se原子配位,形成一个方形平面结构,PdSe₂中Pd 4d轨道和Se 4p轨道的杂交形成了共价键。费米能级附近的能带由Se元素的p轨道贡献。单分子层PdSe₂的电导带最小值和价带最大值来源于Se的p态和Pd的d态。自旋轨道耦合不影响单层PdSe₂的电子结构。

    图2. (a) PdSe₂单分子层的俯视图和侧视图,其中单位细胞用红线标记,蓝色和黄色的球体分别代表Pd和Se原子。(b) 皱褶五边形PdSe₂的三维晶体结构。(c, d) 具有偶、奇数层的PdSe₂晶体结构的STEM图像。(e, f) 相应的层数为偶数和奇数的PdSe₂晶体的模拟图像,插图显示了相应STEM图像的原子模型。

    能带结构:具有半导体特性的单层PdSe₂间接带隙的禁带宽度是随着PdSe₂层数的增加而减小,直至PdSe₂没有带隙(0 eV)且具有半金属特性。

    图3. (a) 无应变单分子层PdSe₂的能带结构。在(b) 压缩应变和(c) 拉伸应变下,单层PdSe₂具有对称双轴的电子带结构。(d) 体材料PdSe₂的电子能带结构,费米能级设为零。红色和蓝色区域分别代表Pd 4d和Se 4p态的贡献。(e) 拉伸应力为1.0 GPa时PdSe₂体材料的电子能带结构。(f) 体材料PdSe₂的带隙、导带底、价带顶和层间距随单轴拉应力的变化,其中蓝色区域表示层间距的快速增长。

    图4. (a)不同层数的PdSe₂材料从单层到体材料的拉曼光谱。(b) PdSe₂的六种主要振动模式。

    PdSe₂的性质(各向异性、热电)。

    图5. 模拟了平行构型下Ag模(a)和B1g模(b)的拉曼强度以及交叉构型下Ag模式(c)和B1g模式(d)的拉曼强度。

    图6. 1-3层PdSe₂的(a) 沿x轴(90°) 和y轴(0°)的吸光度。(b) 体材料PdSe₂在300-800 nm范围内的偏振分辨吸收光谱,测量角度为-90~90°。

    图7. (a) 室温下n型(左)和p型(右)掺杂PdSe₂的热电输运系数σ、S和S2σ随载流子浓度的变化。(b) 单层PdSe₂晶格热导率随温度的变化。(c) n型(左)和p型掺杂(右)单分子层PdSe₂室温下的热电特性(ZT)。

    PdSe₂的相变工程。

    图8. (a) 单层Pd₂Se₃的晶格结构和(b) 相应的ADF-STEM模拟图像。(c) 从双层PdSe₂到单层Pd₂Se₃的重建机制示意图。(d) 分层PdSe₂中红色圆圈标记的Se空位配置迁移及其扩散的能垒计算(e)。(f) Pd₁₇Se₁₅的晶格结构和(g) 对应的ADF-STEM图像。(h) 氩气等离子体处理PdSe₂逐层形成Pd₁₇Se₁₅工艺示意图。

    III         PdSe₂的生长

    PdCl₂和Se的化学气相沉积反应生成PdSe₂薄膜。

    图9. (a) CVD法合成PdSe₂的原理图。(b, c) 制备的多层PdSe₂薄膜的照片和AFM高度轮廓图。

    等离子体刻蚀处理减薄PdSe₂层。

    图10. (a-d) 等离子体处理PdSe₂层的减薄。(e) 刻蚀层与等离子体中的氧含量的关系图。PdSe₂在等离子体刻蚀前(f) 和等离子刻蚀减薄后(g) 的光学显微图。(h-j) PdSe₂碎片变薄前后的原子力显微镜显微图。

    IV PdSe₂基器件

    PdSe₂的电极接触优化。

    图11. (a) 比较了分别与Ti/Au和Pd₁₇Se₁₅接触的PdSe₂沟道的温度依赖迁移率。(b) 采用Ti/Au和Pd₁₇Se₁₅触点的PdSe₂器件肖特基势垒高度的比较。(c) Ti/Au触点和(d) Pd₁₇Se₁₅触点原理图。

    PdSe₂ FET的性能影响因素。

    图12. (a) PdSe₂场效应晶体管原理图及电测量。(b, c) 在15nm厚的PdSe₂碎片上制备源极和漏极的两个器件的SEM显微图。(d, e) PdSe₂ FET对应的转移特性。(f) PdSe₂ FET在10-6 mbar真空条件下的传输曲线。(g) 比较转移曲线与相对于标准测量时间延迟8 s后的测量曲线。Hw为迟滞宽度。

    PdSe₂基光电探测器。

    图13. (a) 基于PdSe₂和硅纳米线阵列的光电探测器原理图。(b) 光电探测器的光强依赖性响应率和探测率。(c) 零偏置电压下,光电探测器在不同波长红外光照射下的时变电流。(d) 不同偏振角的光照射下,器件光电流的变化。

    PdSe₂基湿度传感器。

    图14. (a) 基于PdSe₂的器件在黑暗中相对湿度下电流比的变化。(b) 在黑暗和780 nm照明下灵敏度的相对湿度依赖性。(c) PdSe₂器件在黑暗和780 nm照明下75% RH下的时间响应。(d) 在780 nm下,75% RH下灵敏度的光强依赖性。RH表示相对湿度。

    PdSe₂在激光器中的应用。

    图15. (a) PdSe₂被动调q Nd:GdLaNbO₄脉冲激光实验装置原理图。(b) 脉冲持续时间(左)和重复频率(右)与吸收泵浦功率的关系。(c) 脉冲能量(左)和脉冲峰值功率(右)随吸收泵浦功率的变化。

    PdSe₂的极化光检测以及图像传感器应用。

    图16. (a) 图像传感装置的视图。(b) 用四种波长的光源进行光照射,通过调节不同偏振角,使传感器在单色光照射下的光电流。(c) 在红外偏振光照明下对大写P掩模进行成像的系统设置。(d) 器件在大写P掩模在780 nm光照下的高分辨率当前映射图像,偏振角为0(左)和90(右)。(e) 偏振角为0的大写Z的器件成像。

    V 总结与展望

    本文全面综述了新兴的五边形二维材料PdSe₂的研究进展。首先介绍了PdSe₂的基本原理、PdSe₂的类型、原子和电子结构、带隙和振动特性。其次,对其合成方法做了非常详细地阐述。第三,讨论了电子和光电子器件及其性能,包括金属/半导体接触、场效应晶体管、光电探测器和湿度传感器以及脉冲激光和热电功率器件。最后,介绍了PdSe₂的范德瓦尔斯异质结构及其在整流器、光电探测器和成像系统中的应用。PdSe₂器件的性能已在光电探测器、场效应晶体管和湿度传感器中得到验证,异质结构中的能带取向可以为光致载流子的输运提供平台,而且二维材料作为饱和吸收体在脉冲激光产生的q开关和模式锁定方面表现出了非凡的性能。PdSe₂的合成技术在大规模生产方面仍有很大的发展空间。由于PdSe₂的层状特性,需要改进制备方法来精确控制厚度,这对于高性能器件的制造至关重要,为了满足工业化的需要,需要探索更有效的原子薄、大规模、均匀的二维PdSe₂的合成方法。

    作者简介  

     

    逄金波

    本文第一作者

    济南大学 副研究员

    ▍                                                                                                    主要研究领域                                                

    二维材料的晶圆级可控合成和范德华异质结构筑及其在电子、光电子器件上的应用。

    ▍主要研究成果

    以项目负责人承担国家自然科学基金、山东省自然科学基金等多项课题。在包括Adv. Energy Mater., ACS Nano, Chem. Soc. Rev., InfoMat, Adv. Opt. Mater., Appl. Energy, Solar RRL等学术期刊上发表SCI文章50余篇,被引2300余次,H因子为23。

    ▍Email: ifc_pangjb@ujn.edu.cn


     

    刘宏

    本文通讯作者

    济南大学、山东大学 教授

    ▍                                                                                                 主要研究领域

    生物医学传感、智能传感、二维材料与器件的研究。

    ▍主要研究成果

    在包括Adv. Mater., Nano Letters,ACS Nano, J. Am. Chem. Soc, Adv. Fun. Mater, Envir. Eng. Sci.等学术期刊上发表SCI文章300余篇,其中,影响因子大于10的近50篇,个人文章总被引次数超过21000次,H因子为68,30余篇文章被Web of Science的ESI选为“过去十年高被引用论文”(Highly Cited Papers (last10 years)),文章入选2013年中国百篇最具影响国际学术论文,2015和2019年度进入英国皇家化学会期刊“Top 1% 高被引中国作者”榜单。2018、2019年和2020年连续三年被科睿唯安评选为“全球高被引科学家”。

    ▍Email: hongliu@sdu.edu.cn

    撰稿:原文作者

    编辑:《纳微快报(英文)》编辑部

    关于我们  

    纳微快报  

    Nano-Micro Letters《纳微快报(英文)》是上海交通大学主办、Springer Nature合作开放获取(open-access)出版的英文学术期刊,主要报道纳米/微米尺度相关的高水平文章(research article, review, communication, commentary, perspective, letter, highlight, news, etc),包括微纳米材料的合成表征与性能及其在能源、催化、环境、传感、吸波、生物医学等领域的应用研究。已被SCI、EI、SCOPUS、PubMed Central、DOAJ、CSCD、知网、万方、维普、超星等数据库收录。2020 JCR影响因子IF=16.419,在物理、材料、纳米三个领域均居Q1区(前10%)。2020 CiteScore=15.9,材料学科领域排名第4 (4/123)。中科院期刊分区:材料科学1区TOP期刊。全文免费下载阅读(http://springer.com/40820),欢迎关注和投稿。

    E-mail:editor@nmletters.org

    Tel:021-34207624



    转载本文请联系原作者获取授权,同时请注明本文来自纳微快报科学网博客。

    链接地址: