王鹏   

Supervisor of Master's Candidates

Academic Honor:

2015    Province tu gong

Honors and Titles:

2025    日本学术振兴会外籍聘用研究员(JSPS Fellow)

2007    山东省高校优秀科研成果奖三等奖

2011    新疆自治区科技进步奖二等奖

MORE>
Language:English

Profile

王鹏博士,教授,博士生导师日本学术振兴会外籍聘用研究员(JSPS Fellow),英国牛津大学CSC公派访问学者新疆自治区有突出贡献优秀专家(省级称号),新疆自治区天山英才计划人选(省级人才)兼任中国力学学会动力学与控制专业委员会分析力学专业组组员,中国交叉科学学会理事,《动力学与控制学报》/海南大学学报(自然科学版)》青年编委。长期从事分析力学与应用数学的研究,研究兴趣包括约束系统动力学、超细长弹性杆力学、生长力学、多物理场耦合问题等的建模与计算。主持国家自然科学基金项目3项,日本学术振兴会项目1项,发表学术论文40多篇,曾获新疆自治区科技进步二等奖、山东省高校优秀科研成果奖等。

荣誉与奖励

1. 新疆自治区第十批有突出贡献优秀专家(2015省级称号)

2. 新疆自治区天山英才工程第二层次培养人选(2013省级人才

3. 新疆自治区科技进步奖二等奖(排名第一,2011省级奖

4. 山东省高校优秀科研成果奖三等奖(排名第三,2007年,厅局级奖)

5. JSPS Fellow

学术兼职

中国力学学会动力学与控制专业委员会分析力学专业组组员

中国交叉科学学会理事

《动力学与控制学报》/《海南大学学报(自然科学版)》青年编委

岛根大学(日本)教授

主要科研项目

1.国家自然科学基金面上项目(批准号:12272148),2023.01-2026.12,主持。

2.国家自然科学基金面上项目(批准号:11772141),2018.01-2021.12,主持。

3.国家自然科学基金地区项目(批准号:11262019),2013.01-2016.12,主持。

4.日本学术振兴会外籍聘用研究员项目(长期,批准号:L25504),2025.04-2026.04,主持。

研究兴趣

非完整力学

约束力学系统变分原理

超细长弹性杆力学

微分方程的对称性

生物生长的数学和力学模型

智能软材料微纳力学

发表论文

(代表通讯作者)

2025

38.BaiQiang Liu(学生), Peng Wang, XiaoTong Peng; Analysis of electromechanical coupling responses of piezoelectric nanobeams under multi-physical field coupling. AIP Advances 2025; 15 (8): 085133. https://doi.org/10.1063/5.0292053

37. Liu B (学生), Wang P, Lv Y .  Vibration analysis of piezoelectric nanobeams with flexoelectric and surface effects on an elastic foundation. Acta Mechanica, 2025 https://doi.org/10.1007/s00707-025-04411-9

36.刘百强,王鹏. 考虑表面效应和高阶电场的功能梯度压电纳米梁静态弯曲行为分析, 动力学与控制学报, 2025,,2025,23(6):9-18. Liu Baiqiang, Wang Peng. Static Bending Behavior Analysis of Functional Gradient Piezoelectric NanoBeams Considering Surface Effects and High-order Electric Fields[J]. Journal of Dynamics and Control, 2025, 23(6): 9-18.

35.王鹏,薛纭. 细长弹性杆分析力学及应用.动力学与控制学报, 2025,23(3):40~47; Wang Peng, Xue Yun. The Analytical Dynamics and Applications of Super Thin Long Elastic Rod[J]. Journal of Dynamics and Control,2025,23(3):40-47

34. Wang Peng, Liu B Q, Peng X T, Gao F, Bending and vibration behavior of functionally graded piezoelectri. Scientific Reports, 2025  15:13439

33. Xu J(学生), Wang P, Xiao Z. Dynamic flexoelectric effect on the vibration behavior of piezoelectric nanoplates. Acta Mechanica, 2025 236, pages 79–89SCI, Q2

2024

32. Wang P Xu J, Zhang X, Lv Y. Free vibration of nanobeams with surface and dynamic flexoelectric effects. Scientific Reports 2024, 14 : 30192. https://doi.org/10.1038/s41598-024-82002-9.  SCI, Q1

31. Wang P, Liu B Q. Fractional gradient system and Birkhoff system. Acta Mechanica, 2024, 235: 3607-3619.  SCI, Q2

30. 齐皓晖(学生)王鹏.力学系统的任意阶分数维梯度表示.力学学报,2024567:1-7.  EI收录

29. Xu J W(学生), Wang P† , Liu Z H. Electromechanical coupling in piezoelectric nanoplate due to the flexoelectric effect.  Acta Mech., 2024, 235: 479-492. https://doi.org/10.1007/s00707-023-03764-3.  SCI, Q2.

28. 管永乐(学生)王鹏, 刘百强. 基于超细长弹性杆模型的斜拉索参数振动分析. 动力学与控制学报,2024, 22(9):37-44. 核心

2023

27. Wang P, Gao F. Generalized Hamilton system and fractional gradient system. AIP Advances, 2023, 13: 125112,  DOI:10.1063/5.0174244,  SCI, Q4

26. 陆登科(学生), 王鹏王小月徐嘉伟刘振海.基于超细长弹性杆模型的斜拉索静力构形分析. 2023,21(7):68-76. 核心

25. Wang P, Euler-Lagrange equations and Noether’s theorem of multi-scale mechano-electrophysiological coupling model of neuron membrane dynamics. Journal of Theoretical and Applied Mechanics, 2023;61(4):847–856 DOI: https://doi.org/10.15632/jtam-pl/172875   SCI, Q4

24. Liu Z H(学生), Wang P†, Xu J W. The electro-mechanical coupling responses of functionally graded piezoelectric nanobeams with flexoelectric effect.  AIP Advances, 13, 065221 (2023) https://doi.org/10.1063/5.0154946  SCI, Q4

23. Wang P†, Fractional Noether theorem and fractional Lagrange equation of multi-scale mechano-electrophysiological coupling model of neuron membrane, Chin. Phys. B, 2023, 32(7), 074501 . IF:1.7 DOI: 10.1088/1674-1056/ac9cbe.  SCI, Q2

2022

22. Wang P†, A New Fractional Gradient Representation of Birkhoff Systems. Math.Pro.Engin 2022, Vol.2022, Article ID 4493270, 10 pages   DOI: 10.1155/2022/4493270, IF: 1.43 SCI, Q2

2020

21. Y Zhang(学生), S Zhang, and P Wang†. Growth induced buckling of morphoelastic rod in viscous medium.Chin.Phys.B. 2020, 29(5): 054501. DOI:10.1088/1674-1056/ab7b4d,   SCI, Q2

20. Zhang S(学生), Y Zhang, Wang P. A new solution of thin elastic rod by dynamic analogy.J. Phys.: Conf. Ser.,,2020, 1592 012091. EI收录

2018

19. Wang P. Conformal invariance and conserved quantities of mechanical system with unilateral constraints. Communications in Nonlinear Science and Numerical Simulation. 2018, 59:463-471 截止2022被引用12. DOI:10.1016/j.cnsns.2017.12.005, IF:4.186  SCI, Q1

18. 楼智美,王元斌,王鹏. 一类典型二阶非线性微分方程的解析研究. 华东师范大学学报(自然科学版),2018,  (4):129-1378.

2017

17. Wang P†, Feng Hui RongLou Zhi MeiConformal Invariance and Conserved Quantities for Lagrange Equation of Thin Elastic RodACTA PHYSICA POLONICA A, 2017,131(2): 283-287.DOI:10.12693/APhysPolA.131.283,  IF:0.725  SCI, Q4

16. 王鹏,薛纭,楼智美. 黏性流体中超细长弹性杆的动力学不稳定性. 物理学报,2017,66(9):094501-8. DOI: 10.7498/aps.66.094501, IF:0.906  SCI, Q3

2016

15. Wang P†, Xue Y. Conformal invariance of Mei symmetry and conserved quantities of Lagrange equation of thin elastic rodNonliear Dynamics2016834):1815-1822.  DOI:10.1007/s11071-015-2448-8. IF:5.741,截止2023年被引用27次。SCI, Q1

14. 王鹏,薛纭,弹性细杆静力学的薛定谔粒子波动比拟,北京大学学报,2016524676-680. 核心

2013

13. Wang P, Xue Y, Liu Y L. Noether symmetry and conserved quantities of the analytical dynamics of a Cosserat thin elastic rod. Chin. Phys. B 2013, 22(10) 104503  SCI, Q2

2012

12. Wang P†. Perturbation to symmetry and adiabatic invariants of discrete nonholonomicnonconservative mechanical system. Nonlinear Dyn., 2012, 68 (1-2 ): 53-62. 被引用41次。 SCI, Q1

11. Wang P, Xue Y, Liu Y L. Mei symmetry and conserved quantities in Kirchhoff thin elastic rod statics. Chin. Phys. B 2012, 21(7): 70203-070203. SCI, Q2

2011

10. Wang P†, Zhu H J. Perturbation to symmetry and adiabatic invariants of general discrete holonomic dynamical systems. Acta Phy. Pol. A 2011, 119 (03): 298-303. SCI, Q4

9. Wang P†. Perturbation to Noether symmetry and Noether adiabatic invariants of discrete mechanico-electrical systems. Chin. Phys. Lett. 2011, 28(04): 040203-4. SCI, Q1

2010

8. 王鹏,祝恒江. 相空间中变质量力学系统的Noether-Lie对称性与两类广义守恒量. 新疆师范大学学报(自然科学版), 2010, 29(4): 47-49. 核心

2009

7. Wang P, Fang J H, Wang X M. A generalized Mei conserved quantities and Mei symmetry for Birkhoff systems.Chin. Phys. B 2009, 18(04): 1312-1315. SCI, Q2

6. Wang P†, Fang J H, Wang X M. Discussion on perturbation to WNS and adiabatic invariants for Lagrange systems.Chin. Phys. Lett. 2009, 26(03): 034501-4. SCI, Q1

2007

5. Wang P, Fang J H, Ding N.Perturbation to Lie symmetry and Hojman exact and adiabatic invariants of generalized Raitzin canonical equation of motion. Commun.Theor. Phys. 2007, 48(04): 615-618. SCI, Q2

4. Wang P, Fang J H, Ding N. Two types of new conserved quantities and Mei symmetry of mechanical systems in phase space. Commun. Theor. Phys. 2007, 48(6): 993-995. SCI, Q2

3. Wang P, Fang J H, Ding N. Hojman exact invariants and adiabatic invariants of Hamilton system, Commun. Theor. Phys. 2007, 48(06): 996-998. SCI, Q2

2006

2. Wang P, Fang JH, Ding N, Zhang PY. A unified symmetry of nonholonomic mechanical systems in phase space. Chin.Phys. 2006, 15(07): 1403-1406.SCI, Q2

1. Wang P, Fang J H, Zhang P Y, Ding N. A unified symmetry of mechanical systems with variable mass in phase space. Commun.Theor.Phys. 2006, 46(3): 385-388. SCI, Q2


Educational Experience

  • 2010.9-2014.7  

    上海大学       一般力学与力学基础

  • 2004.9-2007.7  

    中国石油大学(华东)       理论物理

  • 2000.9-2004.7  

    聊城大学       物理学

Work Experience

  • 2025.4-Now

    岛根大学(日本)      JSPS Fellow      教授

  • 2018.9-2019.9

    牛津大学(英国)      CSC公派访问学者      CSC公派访问学者

  • 2008.3-2014.12

    新疆师范大学      专任教师      副教授

  • 2015.7-Now

    济南大学      专任教师      副教授,教授

Copyright 1995-2017 UJN.EDU.CN  |  University of Jinan General Address: No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, China
Click:    MOBILE Version

The Last Update Time : ..